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EXECUTrvESU~Y

Track lateral shift under high speed vehicle lateral loads is an important phenomenon
influencing the safety of the high speed ground transportation systems. The lateral shift can
be gradual with the passage of vehicle traffic or sudden if the track lateral strength is
inadequate. Potential failure modes resulting from the track shift include catastrophic track
buckling. derailment due to wheel climb or gage widening. and ride quality deterioration.

In this report. the fundamental mechanics of the track shift phenomenon are presented in
detail. identifYing the critical conditions for the failure modes originating from the track shift.
A comprehensive review of the literature published in France. England. Sweden. Japan and the
United States is presented. The track shift criteria practiced in these countries are critically
examined. It is concluded that despite the good research work done by the French National
Railways (SNCF) in the last few decades. the state of the art remained empirical. The lack of a
rigorous analysis of the track shift phenomenon makes it difficult and questionable to adopt
the empirical criteria of the foreign railroads for U.S. railroads. particularly due to the wide
range in construction and maintenance practices as well as operating environment.

A rational approach for analyzing track shift under vehicle and thermal loads is outlined.
The approach consists of using a vehicle dynamic model to determine lateral loads generated
on the track. and a track model to evaluate the track lateral response and the resulting
residual deflections after the vehicle passage.

Vehicle dynamic computer codes (such as SYSSIM) exist and can be further improved to
include track compliance. At present. there is no adequate track model that can give track
shift residual deflections. An approach is suggested for the development of such a track model.

Preliminary numerical results on lateral loads are presented using the SYSSIM vehicle
dynamic code. A TGV-type vehicle consist is simulated for this purpose. Baseline results on
limiting track strength are also presented using a simplified track model.

Conclusions of practical interest based on the literature sUlvey conducted are presented.
Recommendations for improved vehicle and track models for track shift evaluations are also
made.

xi





1. INTRODUCTION

European and Japanese railroads have developed and operated high speed rail systems for
some time. Track shift has been recognized as an important safety and operational issue for
these railroads. The French National Railways (SNCF) has had an active research program in
this area for the last three decades. Other railroads such as German Railways (DB), British
Rail (BR) and Sweden Railways (SJ) have also started major research programs on testing and
analyses of track shift.

With the expected introduction of high speed rail systems in the near future in the United
States, and for purposes of comparison of high speed rail with other modes of transportation,
there is a need to evaluate the safety and efficiency of high speed rail in the United States. The
Federal Railroad Administration (FRA) has sponsored research on track shift through the Volpe
Center's (VNTSC) technical support.

The first milestone in the Track Shift Research Program is a state-of-the-art review of the
literature. Foster-Miller has completed this review study, the results of which are contained in
this report.

Section 2 of this report first addresses the basic definition of track shift and the key safety
issues related to this phenomenon; It identifies track shift as the growth of the lateral
misalignment from the initial value at the time of track construction or after realigning
operations. Four major failures of track structure and vehicle operations which originate from
the lateral misalignments are identified. These are: 1) sudden track shift, 2) track buckling,
3) ride quality deterioration; and 4) derailment due to wheel climb or gauge widening. In
addition, the misalignment may itself cause the vehicle to exceed lateral design loads. Critical
track shift conditions can be expressed in terms of lateral deflection, vehicle loads and track
lateral strength. The premaintenance track misalignment amplitude is also introduced as a
parameter in the track shift studies.

Section 3 presents a critical review of the available literature on track shift in France,
England, Germany, Sweden and the United States. Work done by the railroad organizations in
these countries and also by the Union of International Railways (OIC/ORE) is examined. The
review showed that there is widespread usage of the Prud'homme criterion as a guideline for
vehicle qualification. A track shift criterion has been developed by SNCF; however, there is no
general agreement on this track shift criterion. The review also indicated that the SNCF
approach is essentially based on vehicle tests on specific track conditions, and their data have
not been correlated theoretically or in terms of basic track parameters. Hence, it is not
appropriate to use their track shift data for U.S. track conditions.

Section 4 presents the vehicle modeling requirements for an assessment of vehicle loads,
and track misalignment levels for potential derailment and reduced ride quality beyond the
required limits. The SYSSIM code now in use at Foster-Miller has been exercised on a TGV
type consist, and some data on critical track misalignments are presented. The model needs to
be improved in its track structure simulation to enable a more accurate assessment. SYSSIM
will thus form an important tool for further development in the track shift studies.

1



Section 5 gives the requirements of a track structure model for track shift quantification.
Important track parameters. including the loaded tie-ballast resistance, are identified. The
problem of determining the loaded track panel response and its residual deflections under
loading and unloading cycles is addressed. A theoretical approach is outlined to determine the
cumulative track residual deflection due to vehicle passes. This will determine the track
strength requirements for stabilization under a finite number of passes. The analysis
procedure will also determine the critical track shift conditions producing a sudden or rapid
increase in misalignment growth under a limited number of vehicle passes.

Basic track panel test requirements under repeated static loads are also presented for the
validation of the theoretical model and preliminary assessment of track shift.

Section 6 presents significant conclusions of the present state-of-the-art survey and
recommendations on the short-term need of the track shift research in the United States.

2



2. TRACK SHIFT FUNDAMENTALS

In this section the background and the mechanics of track shift and related track failure
modes are presented.

Both jointed and continuous welded rail (CWR) tracks may experience deviations in lateral
alignment under revenue operations. Several causes can be attributed to this phenomenon.
the primary factor being the vehicle loads. Vehicle lateral loads tend to move the track
laterally. whereas the vertical loads tend to stabilize the track by increasing the frictional
resistance at the tie bottom. In CWR track. the thermal load also plays a significant role.

Track shift is defined as the permanent lateral distortion of a track segment. which can
occur under vehicle passes due to resulting lateral loads and which can lead to unsafe
conditions for further traffic unless remedial maintenance actions are taken. The permanent
lateral distortion can occur cumulatively under vehicle passes. or can occur suddenly under a
single or a number of passes.

Track shift can occur locally or can be spread over a long section of track. The latter is
caused in weak curved tracks when a steady curving force is exerted by the vehicles. The local
shift is caused by vehicles negotiating a pre-existing irregularity. Track shift can also be
caused by loads resulting from vehicle hunting. Radial movement of curves under thermal
loads is another example of track shift.

Studies on track shift are required for the follOWing reasons:

• In the design and maintenance of modern high speed track. adequate track lateral
strength must be assured to withstand vehicle and thermal loads. Track shift potential
is the ultimate consideration in determining the reqUired lateral strength.

• Track shift should be eliminated or controlled to occur at a slow rate (with respect to
the traffic tonnage) so that periodic track inspection. realignment and other
maintenance operations can be planned in an economical manner. particularly for high
speed tracks.

• Track shifting forces can be a major contributor to the formation and growth of local
track geometric imperfections. Vehicle operators must know the allowable track
shifting forces to limit vehicle loads and speeds. Therefore. vehicle qualification tests
should be performed on tracks with known and prescribed lateral strength. Although
empirical gUidelines exist on vehicle qualification loads. they may be too conservative or
in some cases nonconservative as discussed later in this report.

• For corridors such as the Northeast. where tracks (with curvatures and high
superelevations) already exist. it is necessary to define the maximum safe speeds for
high speed train operations. Although the speed limits for conventional vehicles are
decided from considerations of ride comfort. wheel climb derailment potential. and other

3
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safety considerations. new emerging vehicles such as the X2000 can overcome some of
these limits. To achieve higher speeds than permitted for the conventional vehicle. the
ultimate limit may be based on track shift considerations.

In summary, it is important to define the ultimate track lateral strength for planning safe
vehicle operations and the evaluation of vehicle qualification loads.

2.1 Track Strength Definition

Referring to Figure 2-1. the track shifting forces include the vehicle net axle lateral loads,
H, and the thermal compressive loads. Po, in the rail. The net axle loads include the curving
force and the dynamic augment due to any initial misalignment. The vehicle and thermal loads
are reacted by the ballast (friction on the tie bottom, sides in the ballast crib and the ballast
shoulder at the tie ends). The resultant ballast reaction in the lateral plane is schematically
represented by S. Under dynamic equilibrium conditions, there will be a resulting track lateral
dynamic defleCtion. which may not vanish (Le., the track may not completely recover its initial
configuration) after the vehicle passage. This is due to the "elasto-plastic" characteristic of the
ballast discussed in Section 5. Hence. there can be a permanent or residual defleCtion of the
track structure. Under certain conditions, the permanent deflection can accumulate globally
(in the case of curved tracks) or locally at weak spots such as misalignments (in the case of
tangent tracks). Clearly. if the vehicle load exceeds the maximum reaction that can be offered
by the track panel. then the resulting track deflection can be rapid and excessive for safe
operations of vehicles. The maximum resistance that can be offered by the track to moving
loads without excessive residual defleCtions will be called the track "dynamic" strength. Sd.

The track dynamic lateral strength. Sd. must be distinguished from its static lateral
strength. Ss. which is the maximum stationary load that can be sustained by the track without
excessive permanent defleCtions. The dynamic strength is for an indefinite number of axle
passes whereas the static strength is for many cyclic load applications at the stationary load
point. Clearly, it is important to define the allowable residual defleCtions in the evaluation of
static or dynamic strengths. This will be determined from considerations of safety, of track and

Figure 2-1. Track shifting forces and track reaction definition
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vehicle operations. and will be a subject of future investigations. It is important to recognize
that the dynamic lateral strength is significantly less than the static strength. This has been
demonstrated in the SNCF tests on track shift. and will be analytically investigated in a
forthcOming report.

The French have determined track dynamic strength experimentally by applying a known
moving lateral load on tracks through a single axle under vertical load. The axle is situated
sufficiently far away from other axles to minimize interference on the vertical load distribution.
The vehicle runs at slow speed. After the passage of the vehicle over the test segment, the
mean transverse residual displacement is measured. The lateral load is incremented at each
pass. The relationship between the applied axle lateral load and the residual deflection is
typically as shown by the full line in Figure 2-2. The load at which significant residual
deflection begins to occur was originally considered as the track dynamic strength. This
definition was later refined on the basis of tests with multiple passes at constant lateral axle
force. The typical data is shown in Figure 2-3 which relates the track shift to the number of
passes. These curves show that for values of lateral force below a limit. the track deflections
stabilize at some finite value. Above this critical lateral force. the deflection is found to
increase at a very rapid rate. The lateral load below which the deflections stabilize at
permissible values will be defined here as the track dynamic lateral strength. Thus, referring
to Figure 2-3, H} will be regarded as dynamic strength and not H2. since the deflection at H2
stabilizes at a value higher than the permissible (8 ).m

This dynamic track strength is a complex function of the track parameters which are
discussed in Section 5.

Figure 2-2. Track shift versus net axle load

5



H1 < H2 < H3
(Constant Lateral Loads)

z
l/)
CD
l/)

~
a..
.....o....
CD
.c
E
::J
Z

H2

-8 ~I
S2 I

~8S1-~~ (Stabilized) !
-v "I,

I,
/ _- H3

I __ --

/ ----I __", (Progressive)
/ ".,""

/ ' ".,....r
I /
1/' /

,>.' /
, I /

/' 1/
/,' /l

, "., I

,/"" I
/"" I

I

8c
Residual Deflection 253-0T5-94070-9

Figure 2-3. Track shift versus vehicle passes (Definition ofdynamic strength)

2.2 Allowable Misalignments and Track Shift

From Figure 2-3. it is seen that track shift itself is a form of misalignment for subsequent
traffic even though it may reach a stable level. For high speed traffic. four levels of lateral
misalignment are important as recognized by the European researchers. These are:

• Initial misalignment after realignment or construction. B.

• Maximum allowable premaintenance misalignment. Om'

• Critical misalignment at which operations are impacted. oc.

• Stable track shift misalignment levels reached after many passes. os.

The initial misalignment after realignment or construction tolerance for new tracks is
represented by 6. This misalignment may be on the order of one or more millimeters for high
speed tracks.

The maximum allowable misalignment prior to maintenance operations according to the
individual railroad practices is represented by om' For example. the SNCF uses about 4 mm as
the maximum limit for their TGV track maintenance.

The critical misalignment amplitude at which vehicle operations are impacted or where
track structure fails is represented by oc. Several possible failure modes may have to be
considered to determine the lowest value of oc. These are discussed in the follOWing
subsection. As discussed later in Section 3. reference UlJ. the SNCF indicates 12 mm peak to
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peak as a possible value of Oc for their TGV track. at which the track is not considered to be
traffic worthy. Mere realignment is not considered to be adequate at this misalignment level.
Additional work involving ballast consolidation and packing is required.

The displacement Os in Figure 2-3 is the stable deflection at a large number of passes and is
clearly reached only if 0c. the critical misalignment. is larger than os' For low speed track. Os
can be on the order of 20 mm according to published test data. and Oc can be larger than that.
For high speed track. stabilization may not be reached prior to the critical misalignment limit.
0c' It is important to detennine 0c. the critical misaligrunent. for high speed tracks. and evaluate
the risk involved in the choice of Om by railroad practices.

The critical misalignment 0c, can be determined from mechanistic considerations for given
vehicle parameters. speed and track resistance characteristics. although at present there is no
suitable theoretical model to do this. The premaintenance misalignment. om. can be derived on
a tradeoff between the frequency of maintenance (number of safe vehicle passes or MGT) and
the margin of safety based on the critical misalignment. 0C' The construction tolerance. B. is
usually detennined by the railroads as a tradeoff between the cost of construction.
maintenance and the number of revenue passes that can be obtained between maintenance
cycles.

Although there is no explicit discussion on the wavelengths associated with the
misalignments. the wavelengths are of interest in the track shift analysis. The wavelength
associated with the construction tolerance is on the order of a few meters. For Om. it can be in
the range of 10 to 20m for typical high speed track. For 0C' the wavelength can be in the range
of 20 to 40m.

2.3 Critical Track Conditions

The critical track conditions are defined by the critical misalignment and the critical vehicle
lateral loads. Additional vehicle passes after the critical limits are reached can lead to one or
more of the follOWing failure modes some of which are illustrated in Figure 2-4.

1. Sudden Track Shift Potential - In combination of the increased vehicle loads. and the
thermal loads. sudden track shift (of the order of 20 to 40 mm) can occur. particularly
for curved tracks or in the presence of the misalignment. Alternately. the overall track
panel resistance. S. may be inadequate to resist the vehicle loads. which will result in a
rapid increase in residual deflections under additional passes. leaving an insignificant
safety margin.

2. Derailment - The critical conditions can lead into wheel climb or other derailment
failures. Rail rollover and gauge widening are also possibilities.

3. Buckling - The combination of critical misalignment and the rail thermal loads can lead
to CWR track buckling (or a reduction of the buckling safety margin) due to the loss of
lateral resistance in the uplift zone in-between the trucks. This mode of failure can
generate large levels of track movement. on the order of several centimeters.

4. Reduced Fatigue Life - Vehicle lateral loads can exceed the values. for which the vehicle
suspension and other parameters are designed. This can reduce the vehicle component
fatigue life significantly. or restrict the safe operating speed.

5. Inadequate Ride Quality - At high speeds. the critical imperfection can be such as to
yield lateral jolts or high lateral accelerations exceeding the tolerable limits of ride
quality.
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Figure 2-4. Failure modes
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2.4 Track Shift Criterion

The track shift criterion to be developed in this program should be distinguished from the
vehicle acceptance cIiterion. The latter encompasses both performance and safety to cover a
range of vehicle operations over a range of track conditions. The track shift criterion will
provide a detailed evaluation of safety and track degradation in the lateral plane on track
segments with known parameters. under known net axle loads.

The early Prud'homme formula W based on track shift issues became a vehicle acceptance
criterion in some of the European railroads. Prud'homme. of course. was aware of the
difference in the two criteria. but synthesized the two criteria by introducing a "reference
track." In the United States. no reference track exists as yet although the present FHA
classification defines the geometry limits for tracks. The lack of prescribed minimum lateral
strength limits for U.S. tracks makes it difficult. at present. to use a simple track shift criterion
as a component in the overall vehicle acceptance criterion.

The key elements involved in the analysis of track lateral shift are summarized in
Figure 2-5. If we assume that a high speed vehicle with known characteristics is available for
revenue operations on U.S. tracks. then the pertinent questions on track/vehicle safety are:

• What is the minimum track strength required for normal (full speed) operations of the
vehicle?

• What is the critical misalignment. oc. at which operations are unsafe?

• What is the maximum permissible premaintenance misaligmnent. om. which will give
maximum flexibility for the railroads? What is the margin of safety involved before the
critical condition Oc is reached?

These questions can be answered through a systematic analysis and test validation
program. The results of this program can be condensed into a Track Shift Safety Criterion for
use by the industry. The criterion can be expressed in one or more of the following forms:

• The track under extreme thermal loads should. for a given vehicle. have a minimum
lateral strength to limit the growth rate of lateral imperfections to under a specified
value.

• The cumulative growth of lateral irregularity permissible under normal operations
should have a factor of safety of (say) 2. over the critical growth level. 0c. at which the
vehicle and track will be unsafe for revenue operations.

• The lateral loads generated by high speed vehicles under the extreme permissible track
irregularity should not exceed the lateral dynamic track strength under extreme
thermal loads.

9
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3. CRITICAL REVIEW OF THE LITERATURE

The available literature on track shift including analytical and experimental works as well
as the practices followed or recommended by the railroad organizations is reviewed here. The
literature review includes work done in France, Great Britain, Germany, Sweden and Japan, as
well as in the United States.

The mechanisms involved in track shift phenomena are complex, and are influenced by
such factors as vehicle dynamic loads, track ballast and tie types, track misalignments and
thermal loads. To date, very limited experimental data and analyses are available to gUide
operating criteria. The most extensive work has been conducted in Europe to develop initial
guidelines based on relatively simple models and limited tests. In this section, the test and
analytic data will be reviewed and research needs for improved understanding of track shift will
be pointed out. For consistency in the following sections, as was shown in Figure 2-1, H will
be used to represent the vehicle load (specifically the net axle lateral load); S will designate the
equivalent ballast reaction, and Sd the limiting track panel strength.

3.1 SNCFlORE Studies

The SNCF has been the most significant contributor to the subject of track shift. This
subject has evolved over the last three decades of intense research, starting with the historical
work by Prud'homme, who experimentally evaluated the lateral strength of a wood tie track
under a moving lateral load. The ORE embarked on a major research program in recent times
to quantifY the lateral strength of modem tracks which will be discussed later in detail.

3.1.1 SNCF Analyses

Prud'homme W developed the first empirical equation for the lateral strength of a wood tie
track under vertical axle loads. Over the years, this equation has served as a gUideline for
vehicle qualification loads. Therefore, consistent with the terminology in this report, the
Prud'homme limit will be represented by Hp as follows:

Hp = 10 +V/3 kN, (3-1)

where

v = vertical axle load.

This empirical criterion originally defined the limiting track panel resistance of a wood tie
track with tamped macadam ballast required to prevent or minimize track shift under repeated
loads. This formula did not account for the curvature and the rail thermal load effects.
Prud'homme later recommended a multiplying factor of 0.85 to Hp for these effects. This is
known as 85 percent of the Prud'homme limit.

Amans and Sauvage (2) developed a theoretical artalysis for the loaded track panel
response. On the basis of the theory, they developed an expression for the limits on vehicle
loads which ensures that the track shift occurs only at a "very slow rate" with respect to the

11



number of vehicle passes. This slow progression of track shift will facilitate track inspection
and maintenance.

Amans and Sauvage (2) developed the follOWing relationship for allowable vehicle loads.

(3-2)

where the quantity p. defined below. is used to reflect the influence of rail temperature. track
CUlvature and track geometric and material properties on the panel resistance:

1 8
p = [1- 0.125 AT (1 + 800J]( k v J/ 0.225 ....;.(_E....;.I)...."1/....,.4,,,"" (3-3)

R 2x107 (El v )1/8

where:

R = radius of the CUIVe (m).

T = increase in temperature of the rails above the neutral temperature (OC).

EI = bending rigidity of the two rails in the transverse direction (Nm2).

Ely = bending rigidity of the two rails in the vertical direction (Nm2).

A = rail section (m2).

ky = foundation modulus of the track (Njm2).

This relationship for p was essentially developed on a theoretical basis. The influence of
some of the parameters appears to be minimal according to the numerical results given by Kish
(;;n. For extreme examples. a 40°C (72°F) temperature differential results in only a 6 percent
decrease in H and a 12 deg CUIVe with a 20°C (36°F) temperature differential results in only a
10 percent decrease in the allowable load.

The SNCF theoretical work which provided a basis for understanding the track shift
phenomenon can be improved to incorporate the follOWing features:

• Express the track lateral strength in terms of the basic track parameters such as the
unloaded ballast resistance. tie-ballast friction coefficient and others as discussed in
Section 5.

• Account rigorously for the influence of CUIVature and thermal load.

• Include the effect of track misalignments in the generation of dynamic loads and the
influence of these loads on the growth of imperfections. in addition to the influences of
steady loads.

• Study the influence of multiple axle loads on the track shift.

12
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3.1.2 SNCF/ORE Tests

Original SNCF Tests

The Prud'homme tests were conducted at Vitry-sur-Seine on U33 (46 kg/m) CWR track
with wood ties spaced at 0.58m and RNS clamps. The test track had a curvature of 2.2 deg
(800m radius) and was new with no traffic consolidation. Joule heating was utilized to
increase the longitudinal thennal stresses in the rail. Two test loading vehicle designs were
utilized. The first design was a single "derailleur" vehicle with an 8.2m (27 ft) wheelbase and a
center active axle capable of applying a maximum vertical load of 120 kN (27 kips) and a
maximum lateral load of 110 kN (25 kips). The second design, designated the wagon
"tombereau," consisted of two coupled vehicles on parallel tracks. One vehicle propelled the
other vehicle and applied a lateral load to one of its axles. The maximum loads for this design
were 130 kN (29 kips) vertical and 170 kN (38 kips) lateral. The results from the two designs
were apparently similar.

Two test methodologies were used by the SNCF. The following load parameters were used.

• Method 1: Vertical load constant, lateral load incremented after every pass or after
every ten passes.

• Method 2: Both vertical and lateral load kept constant at all passes.

Using Method I, the cumulative residual deflection was obtained as a function of the lateral
load. Figure 3-1 (a) shows the test data obtained for three different applied vertical load levels.
Ten passes were made at each lateral load level in this case. Both the total deflection, that
which is recorded while under load, and the residual deflection, that which remains after load

Figure 3-1. Lateral resistance and deformation of loaded track (1)

13



is removed, are shown. The critical load has been defined by different researchers through
numerous empirically derived criteria. For tests where one pass was made at each load level,
this critical load was defined by the empirical procedure indicated in Figure 3-l(bl. In this
method, two lines are constructed. One line passes through the origin (point A) and the 1 mm
deflection point (point B) on the load deflection curve. The second line passes through the
5 mm and 6 mm deflection points (points C and D) on the load deflection curve. The critical
load is defined at the intersection of the two constructed lines (point I). For tests such as those
shown in Figure 3-l(a), where ten passes were made at each load level, two target lines were
constructed against the nearly bilinear load deflection curve. The intersection of these lines
then defined the critical load. Thus, the critical lateral loads for each of the three vertical load
levels are designated by points A, B, and C in Figure 3-l(a) based on the residual deflection.

Using Method 2, the SNCF obtained a relationship between the residual deflection and a
larger number of passes. At certain load combinations, the deflection was found to be "stable."
Stable track conditions, according to the SNCF, seem to represent decreasing incremental
growth of deflection with a finite number of passes. For other load combinations, the deflection
increased rapidly without reaching any stable limits. The transition between the stable and the
unstable deflection growth was determined to be representative of critical conditions.

The SNCF test methodology provided a valuable approach to the track shift phenomenon
which is expressed in terms of the track residual deflection as a function of the lateral axle load
and the number of vehicle passes. Stable and unstable regimes of the residual deflections are
identified. The following additional studies are desirable for improved understanding of track
shift and application of the test data to the track maintenance.

• The transition between the stable and unstable regimes should be clearly determined.

• The residual deflection may stabilize at a considerable deflection which may not be safe
for revenue operations. It is desirable to quantify the growth rate of residual deflections
at a given lateral load for planning track maintenance.

• Tests simulating multiple axle loads will be useful in establishing the adequacy of the
single axle load used in the SNCF work.

• Constant lateral loads simulated the steady vehicle curving forces. Loads generated by
vehicle-track interaction (hunting forces, dynamic loads generated at lateral
misalignments) and their influence on track shift should also be experimentally
determined.

SNCF Tests ofTGV Track

Later tests were conducted by the SNCF on the TGV Paris-South-East line near Tonnere (Q)
primarily to measure the panel resistance for the new track design and to compare this
resistance with previous SNCF experiments conducted on older track. These tests are
particularly significant in the development of a resistance characterization methodology in that
a specific criteria for the definition of the limiting lateral resistance is provided.

Tests were conducted using the "derailleur" wagon which applied vertical and lateral load to
the track through a single center axle. Low speed passes were made with vertical load held
constant throughout the testing and lateral load incrementally increased after each set of three
passes. The residual lateral displacement was recorded after each pass. The relationship
between displacement and the applied lateral load is given in Figure 3-2 with a line shown
through the points indicating the displacement after the third pass at each load level. The
incremental change in displacement due to each vehicle pass was then calculated. These data
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Figure 3-2. The TGV track test data (Q1

have been recast to more clearly show the key trend. Figure 3-3 presents the change in
displacement for each vehicle pass with the applied lateral load for each group of passes shown
across the top of the graph. It can be seen from this figure that the change in displacement
decreases for successive passes at a constant lateral load level for all but the last (93.8 kN)
level. According to the SNCF. this indicates that the track is stabilizing at these levels and that
additional passes would eventually cause no increase in deflection. By contrast. the change in
displacement is increasing at the last lateral load level (93.8 kN) and additional passes could be
expected to further displace the track to the point of failure. At this load level the track can be
considered to be unstable. Therefore. the critical lateral load can be deduced by interpolation
between the 87.4 kN and 93.8 kN data points.

Figure 3-3. Increment in residual deflection (SNCF data, (Q))
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The SNCF researchers calculated the rate of change of displacement between constant
lateral load points. Prior to the highest load level. the rate of change of deflection was negative,
indicating a stable condition. At the highest load level, the rate of change was positive,
indicating an unstable condition.

These tests were particularly significant in that they present a specific basis for determining
the limiting lateral resistance. It would be useful to extend this procedure to address the
follOWing considerations:

• The tests were low speed simulations of high speed operations, should, if possible. be
conducted at operational speeds to simulate the actual dynamic loads experienced at
the wheel-rail interaction.

• The rail thermal loads should also be simulated in the tests to assess their influence on
track shift.

ORE Tests

Recognizing the expense and difficulties in conducting the moving load tests discussed
above, the primary purpose of the program discussed in reference (Q) is to develop an empirical
relationship between the limiting lateral load determined through moving load tests and that
determined through static load tests on the panel. The tests presented in this report were
conducted by Rumanian State Railways (CFR) at Bucharest and were designed to be
comparable with previous tests conducted on the same track which are referred to as the
"reference track" tests.

Two static test devices were employed dUring the program. The first applied vertical and
lateral loads on a single axle which was apparently pulled laterally by a second vehicle on a
parallel track similar to the SNCF "tombereau" vehicle. The second device was a converted
tamping/aligning machine which could apply vertical and lateral loads to both rails at the
same points (actually 1/2 loads at each of two points approximately 0.5m apart on both rails).
Low speed dynamic (moving load) tests were also conducted for comparison. The dynamic tests
appear to also have been conducted using the "tombereau" type arrangement.

All tests were conducted on VIC 60 (60 kg/m) rail with wood ties under tamped and
0.04 MGT conditions. Static tests were conducted under both levels of consolidation while
dynamic tests were conducted only under 0.04 MGT conditions with vertical loads of 100 and
200 kN. The comparison data for tamped conditions were taken from an earlier ORE report.
For each of the two static test consolidation levels. a matrix of seven separate loading scenarios
with vertical loads of 67.5. 100. 150, and 200 kN was executed to evaluate the effect of the two
loading devices and various loading rates. Negligible difference was observed in the results
between the two static loading devices. Significant differences were recorded due to the load
application rates.

The data from these tests were analyzed using eight different criteria for determining the
limiting lateral load. A linear relationship between the static and dynamic loads was calculated
for all load application rates and devices. A criterion was determined to show the best linear
relationship for the majority of cases. This criterion defines the limiting lateral load as the load
required to deflect the rail by an amount in millimeters equal to one hundredth of the applied
vertical load in kilonewtons. For example. if the applied vertical load dUring a test was 100 kN.
then the critical deflection would be (l00 x 0.01) = I mm. Thus. the critical lateral load would
be that which resulted in a deflection of 1 mID.
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Recent SNCF Tie Response Tests

Recently tests were conducted by the SNCF (Z) to measure the basic response of the
individual ties. These tests were conducted to measure the lateral resistance at consolidation
levels of 0.015 and 0.10 MGT. The tests were conducted at the Vaires shunting yard between
April and June 1991. Seven different tie types were evaluated in sets of two by replacing the
rail with two braced, 1.2m long sections of U36 rail. Each set of ties was then loaded laterally
up to a deflection of at least 4 nun. The reduced data provide the maximum, minimum, and
average lateral resistance per tie at deflections of 2.5 nun and 4 nun for each tie type and
consolidation level tested. The oak ties showed an average value of about 3.15 kN/tie at 4 mm
after tamping and packing, whereas the corresponding value for the monobloc concrete tie is
11.15 kN. No vertical load was applied on these ties.

While these tests are notable in that they consider the basic tie response characteristics, it
would be desirable to extend the work to include the following:

• Vertical load on ties to determine the tie-ballast friction coefficient for use in the
analytical methodology.

• Full nonlinear characteristic of tie resistance for deflections larger than 4 nun.
Although the maintenance ofTGV track limits the deflection to about 4 nun, a much
larger critical deflection, Be' is of interest in the evaluation of margin of safety, and the
ties may exhibit a softening characteristic beyond 4 nun.

Swedish Tests

A test program similar to that reported by ORE (ill was conducted in Sweden (ff) to
investigate the relationship between Sd and the limiting track strength as detennined from a
static pull test (Ss). The actual testing involved static loading tests which were then compared
to the basic Prud'honune equation. Eight different track configurations were evaluated under
three different vertical loading levels (40, 70, and 100 kN). All test sections were tangent track.

The testing vehicle utilized was a converted mail car with hydraulic cylinders mounted at
its midpoint. This design was similar to the ORE static test vehicle; however, it introduced load
at one point on each rail as opposed to the two point loading of ORE. The vehicle could apply
maximum loads of 250 kN (56 kips) vertically and 100 kN (23 kips) laterally. With the vertical
load held constant, lateral loading was applied at a rate of 5 kN/sec. The residual deflection
was measured after unloading using a tie mounted inductive sensor referenced to a stationary
support in the ballast. The limiting lateral resistance was determined using the criterion
which was discussed previously.

Linear relationships between the limiting resistance recorded and the Prud'honune
equation were fitted to the test data for each track condition. Utilizing the data, Sstat values
were related to the Prud'honune equation and to the results of the ORE report (ill. While linear
relationships were evident for each of the static test conditions, the substantial influence of test
specific parameters, such as loading rate, appear to limit the applicability of the results of
these simpler tests.

Recent tests have been conducted in the United States to qualify the X2000 for operation
over the Northeast corridor (ill. These tests, which utilized an alternative criterion for track
lateral shift li.Ql, are discussed later in subsection 3.5.
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3.1.3 SNCF Practice

The SNCF practice of tolerances and load limits for high speed trains may be inferred from
the SNCF design and maintenance report lllJ and a recent SNCF paper presented at the TRB
ll2). While the Prud'homme criterion discussed above was developed as a limit for a particular
reference track, it has served as a requirement for vehicle performance. During operation of
the TGV, deflection limits are utilized to dictate track maintenance operations and adapted
versions of the Prud'homme criterion govern vehicle loads. The following operational limits are
cited for TGV dual block concrete tie track.

• The maximum repeated lateral axle load which can be applied to the track by the
vehicle is defined by 85 percent of the Prud'homme limit; 0.85(10 + 0.33V), with the
0.85 factor used to empirically account for curvature and thermal loads.

• The dual block concrete tie track must be designed such that the static lateral panel
resistance equals 24 + 0.41V for tamped track and 38 + 0.63V for stabilized track, with
the latter reqUired for summer operations lllJ. For TGV axle V = 170 kN, this limit
equals 93.7 kN for tamped track, and 145 kN for consolidated track. Note that the
limiting resistance, here, represents the maximum stationary lateral load that can be
sustained by the track under the vehicle vertical loads, without resulting in any
permanent displacement of the track panel.

• The rail is manufactured to an initial straightness which typically permits maximum
defect amplitudes of 0.5 mm over 2m of rail length. The track construction or
realigrunent tolerance is very low, probably in the range of 1 mm to 2 mm.

• The peak to peak limits for track lateral defects are about 8 mm, below which
maintenance may not be required, and 12 mm, above which substantial track repair
work will be required, and routine maintenance is not adequate lllJ.

3.2 British Rail Studies

3.2.1 BR Analysis

Programs to evaluate lateral shift have been conducted by the British Rail along the lines of
the SNCFlORE work. A review of the existing experimental data on track lateral strength and
the development of the theoretical analysis of track shift was written by Frederick (1).

A track lateral response model was proposed by Frederick, along the lines of Bijl ll.al.
Attempts were made to quantifY the loaded tie resistance. It was concluded that the track
segment directly under the wheel loads was generally stable due to the increased lateral
resistance, however the resulting track shift due to the vehicle passage must still be limited to
avoid buckling of the track portion between the trucks, or after the vehicle passage (static
buckling due to thermal loads alone). For the BR track conditions, Frederick derived an
expression for the allowable track shift before track buckling is triggered. This is about 6 mm
for wood tie curved tracks (R=500m) and 9 mm for concrete tie curved tracks. These limits
depend on the track lateral resistance, which is not specified in Reference (1).

3.2.2 BR Tests

After a critical review of the work of SNCF (2), BR conducted tests (1) with particular
attention to the effect of ballast consolidation and the influence of larger numbers of vehicle
passes. Basic tie response was characterized through single tie push tests (STPTs) of loaded
ties to develop relationships between applied vertical load and tie lateral resistance. Moving
load tests were then conducted using a loading vehicle design similar to the parallel track
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"tombereau" employed previously by SNCF. Typical results of these moving load tests, which
were conducted with constant vertical and lateral loads and a large number of vehicle passes,
are shown in Figure 3-4. This figure shows the cumulative residual displacement as a function
of the number of passes for three different ballast consolidation conditions. The wide range of
results for track conditions which were considered similar is to be noted. This range of
variation is likely due to the broad qualitative classification of the track conditions and can be
reduced if the ballast resistance is quantified and used as a measure of track strength.

Observations based on this work include:

• BR researchers consider it to be difficult to detennine the critical vehicle loads on the
basis of very small deflections, as derived previously by the SNCF, Figure 3-1.

• A wide "range" was also found in the lateral response of tracks classified simplistically
as tamped and consolidated. A more fundamental approach based on the true ballast
resistance is required to correlate the critical conditions for the track

Figure 3-4. British rail track shift test data (Q)
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3.2.3 BR Practice

British Rail utilizes the Prud'honune limit as a general gUideline for vehicle qualification
(11). The track is maintained to deflection limits which are apparently based on operational
experience.

3.3 Japan (JR) Studies

A general theory for the analysis of track lateral shift is not evident within the available
literature. However, a finite element program, DIASTARS, has been developed by JNR for the
dynamic response analysis of the Shinkansen cars. on tracks with misalignments ll.Q). Results
generated by this program have demonstrated good agreement with experimental results under
extreme conditions. While it is not clear if the Prud'honune limit or other lateral force criteria
have been used in track and vehicle design. the literature discusses the pennissible lateral
deflections and the development ofanalyses to relate these deflections to safety and ride comfort.
The operational practices of the high speed Japanese Shinkansen lines with respect to track
lateral shift are based on deflection limits. An automated mechanized track lining system,
AMTLS. which can maintain the track to tight tolerances to minimize lateral forces and
accelerations has also been developed (16).

Experiments were conducted with misalignments of up to 30 nun over a 40m chord on the
Joetsu Shinkansen line prior to its opening. Test results showed good agreement with the
DIASTARS model.

The follOWing operational limits for track lateral shift have been defined. All alignment
specifications are made over a 40m chord although future vibration analyses may permit
maintenance at various wavelengths. Lateral vibration limits dictate a misalignment limit of
10 nun. JR companies have set up to 7 mm as the maintenance target. Tracks are inspected
every ten days for distortions. Irregularities can now be controlled to almost within the range
of ±2 nun as shown in Figure 3-5. which presents the measured lateral deviation before and
after maintenance as a function of the position along the track.

Track geometry management is a broad scoped issue involving numerous considerations of
which track shift is only one. While the available literature provides substantial discussions of
track geometry, it is unclear what criteria are utilized to limit lateral loads.

3.4 German (DB) Studies

Substantial data have been collected from operations. most notably of the ICE. and these
data have been compared with analyses from other sources. Apparently no theoretical

Figure 3-5. JR alignment due to maintenance operations OBI
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analyses of track lateral shift have been formulated by DB. The DB indicate that their limits on
track lateral shift are based on the related safety issues of derailment and ride comfort
although the data used as the basis for formulation of these limits are not clear.

Based on the available literature, the specific use of Prud'homme or other track shift limits
is unclear due to the following considerations:

• The Prud'homme limit, is considered to be "outdated" by some researchers (lZ) while
others consider it to be the limit of safe operations U.ID.

• The Prud'homme limit is "applied only as a target value for vehicle approval" (lZ).

• Guidelines are not prescribed for limiting lateral defleCtions in service. In fact the
assumption appears to be that no lateral defleCtion will occur at any time, if the track
has sufficient lateral strength.

• The number of vehicle passes are not related to a lateral defleCtion in order to define
maintenance requirements and safety margins.

Recently, vehicle qualification testing of the ICE has been conducted in the United States
(lffi. This program is discussed in the following subsection.

3.5 United States Studies

3.5.1 Track Panel Response Models

Few studies of track lateral shift have been conducted in the United States. However,
several basic tools are available for a comprehensive theoretical study of the subject. For
example, mathematical models are available for the prediction of track panel shift under
vehicle loads, starting from the basic track resistance parameters. These can be extended to
repeated loads to determine cumulative residual deflections. Advanced vehicle dynamic models
are available to evaluate track lateral loads, e.g., SYSSIM code presented in Section 4.

The response of the track structure to static lateral loads has been characterized in
previous work. Tests were conducted at the Transportation Test Center (TIC) in Colorado to
measure the response of track panels and individual ties (2Q). This work developed and
validated an analytical procedure for characterizing panel response based on individual tie
resistance. However, vertical loading was not applied to the track dUring these tests. A
rigorous track buckling model has also been developed and can be utilized for determining the
limiting track shift defleCtions from a buckling safety point of view. An extensive parametric
study (2JJ was conducted with this model to fully assess the relative influence of various track
parameters on the buckling potential.

3.5.2 AAR Laboratory Studies

Laboratory tests investigating loaded track lateral response were conducted at AARI
Chicago in 1980 and were discussed by Kish tal. The relationships between lateral axle load
and track deflection were developed for several different vertical load levels as shown in
Figure 3-6. From these data, the relationships between the limiting static lateral track panel
resistance and the applied vertical load can be developed and one can possibly correlate the
limiting track panel strength as shown in the ORE work discussed earlier.
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Figure 3-6. Lateral load. versus track lateral deflection based on the AAR tests

3.5.3 Vehicle Qualification Tests

Review studies have been conducted by the FRA to evaluate some European designed high
speed rail vehicles. For the ICE train, initially considered for the Texas high speed rail system
(22), it was stated that the lateral wheel loads should not exceed 85 percent of the Prud'homme
limit. For the TGV system (23), the same criterion was cited and data from the TGV tests were
reported to be, in general, not more than 57 percent of this limit.

3.5.4 U.S. Tests on the X2000

A test program was recently carried out to qualify the X2000 tilting train for demonstration
in the United States (ill. Several series oftests were executed including: 1) high cant
deficiency tests; 2) high speed stability tests; and 3) demonstration revenue service runs to
demonstrate safety in the intended operational environment. The main purpose of the testing
was to qualify the vehicles for safety of operation in the planned demonstration tests, and the
tests were not intended to develop the track shift criterion.

One of the "stop-test" criteria utilized for these tests was,

H < 0.5V

which was apparently based on previous tests (l0), This loading limit was never exceeded
dUring the execution of the tests. The Prud'homme limit is not referenced in the test report (ill
although the measured loads exceeded this limit as shown in Table 3-1.

em
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Table 3-1. Comparison ofvehicle net axle lateral load limits

Criteria 2 deg Curve 4 deg Curve

Prud'homme (1 0+V/3) 62 kN 62 kN

85% Prud'homme 53 kN 53 kN

0.5V Criterion 78kN 78 kN

X2000 Test Data 68 kN 66 kN

Although the test report (ill stated that the criterion was not exceeded and that track lateral
shift was not observed dUring the course of the test program. the tests involved a maximum of
only 15 passes (approximately 0.006 MGT) through anyone curve. Further. more severe
conditions such as track imperfections and high compressive thermal load were not simulated.
Furthermore. the track lateral strength was not measured. Therefore. although the proposed
criterion may be adequate for vehicle acceptance and qualification. further detailed testing on
the track is required for use as a track shift criterion.

3.5.5 U.S. Tests on the ICE

A second test program was also recently carried out to qualify the German ICE train for
operation in the United States liID. Currently. the available results are limited with only brief
discussions of the limiting conditions. As these tests were conducted both to evaluate the ICE
and to compare it to the Swedish X2000. it is assumed that the same safety criterion was
utilized.

The measured loads did not exceed the limits as per the criterion during testing. However,
unlike the X2000 tests. the truckside LjV limit was exceeded in some locations. The condition
of the track after testing was not reported. As with the X2000 tests. the number of passes was
small. The data may be adequate for vehicle qualification. but additional testing with limiting
track conditions is required for an assessment of track shift potential.

3.5.6 Current U.S. Standards

The United States has. to date. no specified limits on vehicle loads and track strength
requirements for high speed rail operations. At present the FRA classification (Class 1 to 6)
covers speeds up to 110 mph. Clearly. with much higher speeds on modern track likely to be
introduced in the United States. the track shift potential increases and the allowable
misalignments become much smaller. The tracks will have to be maintained to more stringent
specifications for assurance of comfort and operational safety.

3.6 Future Research Needs

The research conducted to date by the SNCF and other researchers has provided a strong
basis for the understanding of track shift. Their work has established relationships between
the applied vertical load of the vehicle and the lateral strength of the track for particular track
structures. Limits for the vehicle applied lateral load have also been established and utilized.
These limits. which can sometimes be conservative. have been demonstrated through safe. high
speed operation over European tracks with large radius curves. While this work is valuable in
support of the development of a rational track shift model for modern U.S. track, significant
additional research is required to extend the scope and accuracy of the previous work.
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The following future research needs are identified based on this literature review and an
assessment of the current U.S. standards for maintenance:

• Establish a relationship between the size of a track defect, its growth or reduction
under vehicle passage. and the resultant dynamic component of the lateral load.

• Evaluate the lateral strength of modern U.S. track and determine the allowable vehicle
lateral loads from track shift and other safety considerations.

• Develop functional maintenance criteria recommendations for U.S. track which can be
used in operation to control the lateral shift.
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4. VEHICLE MODEL

In the analysis of track lateral shift. it is necessary to characterize and quantify the lateral
loads exerted on the track by vehicle passage. These loads. which may result from curving
forces or forces generated dUring negotiation of a track misalignment. will be used as inputs to
the track lateral response models which will be developed in this program. Given these inputs.
the track models will then determine the potential for sudden track shift or the growth of track
misalignments.

In this section. vehicle dynamic models will be employed for a preliminary investigation of
the vehicle lateral forces exerted on the track and the safety limiting conditions arising from
track shift. These conditions. which must be investigated to fully determine the overall limiting
lateral deflection or load for the track. include:

• Potential for high lateral loads exerted on the track. possibly exceeding the critical track
strength.

• Potential for vehicle wheel climb or gage widening derailments.

• Ride quality degradation as the vehicle negotiates the misaligned track.

Ideally. the analysis approach for track shift would include a fully coupled model which
accounts for the effects of vehicle-track interaction. Currently. such an interaction model is
not available. and existing modeling work has concentrated on development of separate vehicle
and track models. In general. this existing work falls into two categories. There exist many
complex analyses of vehicles using a simple track model. designed to identify the forces
between the wheel and rail up to and including incipient derailment. Other efforts have
instead been aimed at modeling the track under a variety of operational conditions and have
not included a vehicle model but have used the forces interacting with the rail. This has been
the approach derived from the study of track buckling.

An advanced program called SYSSIM. originally developed by Blader. has recently been
used to make studies of wheel/rail systems. In this program. the wheel-on-rail rolling contacts
are modeled in sufficient detail for the accurate representation of a wheel climb derailment.
However. the SYSSIM track model does not include details of the track mechanics behavior.
SYSSIM is available for modification to include a continuum rail and track model which would
allow valid computation of track response to single and repeated axle passages. As it stands.
the SYSSIM model is suffiCient to predict the response of any vehicle to track alignment
perturbations so long as no deflections of the rail or track accompany the response. The model
is used here to give a preliminary assessment of the significance of track shift and its related
safety issues.

It is a common engineering practice to express the numerical results obtained in the
simulation in the form of certain lateral to vertical force ratios. These ratios are defined in
Figure 4-1. These ratios are used in criteria for safe'ty evaluations. For example. the Net Axle
Force ratio is used in the track shift empirical criterion (ill. The Truck Side Force ratio is
applied to predict the gage widening potential. The Single Wheel Force ratio is sometimes used
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Figure 4-1. Lateral-to-verticalforce ratio definitions

for wheel climb potential evaluation. A discussion on the state-of-the-art criteria is given in
Blader's work (24). The criteria used here are only for the purpose of numerical illustrations
and should not be considered as the final tools in the assessments. It should also be remarked
that the selected numerical values for the force ratios are the maxima or worst case values
from the simulation after the time dependent data have been filtered at 15 Hz, as explained
later in this section.

4.1 Preliminary Simulation of a TGV-Type Vehicle

The objective of this work is to formulate a strategy for further investigation of the safety
limiting conditions arising from track shift. As an example, the system investigated here is
that of a short TGV-type consist with a power car, lead coach and a single articulated car (see
Figure 4-2). The suspension characteristics used in this analysis are representative of a high
speed vehicle such as the TGV. The track is considered to have an initial sinusoidal lateral
misalignment. The peak-to-peak amplitude and wavelength of the sinusoidal misalignment

Figure 4-2. Schematic of TGV-type consist model
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have been varied in this study to investigate their effects on the lateral to vertical force ratios.
Speeds of up to 300 lan/hr are considered.

Using the SYSSIM model of the TGV-type consist with the track misalignment, several
indicators of unacceptable behavior have been investigated. These include the magnitude of
the lateral forces and lateral to vertical force ratios applied to the track, the potential for wheel
climb or gage widening deraihnent, and the deterioration of ride quality.

The use of the computer model in assessing each of these behaviors is described below.

4.1.1 Axle Forces and Net Axle Force Ratios

Primary objectives in the overall analysis of the vehicle-track response are to characterize
and quantify the lateral loads exerted on the track, and detennine if these loads are sufficient
to induce track lateral shift. In the initial analysis performed here, the net axle loads on the
track during negotiation of the initial misalignment were calculated using the SYSSIM
simulation. These loads were then compared to the 85 percent empirical Prud'homme limit
and the overall net effect of the dynamic axle loads on the track misalignment were
investigated.

Typical results of the vehicle dynamic response as it negotiates the track misalignment are
illustrated in Figure 4-3, which shows the path of one of the vehicle axles through the
misalignment. (Note that all results presented here have been filtered at 15 Hz to eliminate any
high frequency content in the response, which is not important for this study.) The case shown
in this figure corresponds to a vehicle speed of 300 lan/hr, with a 12 mm misalignment
amplitude and 10m misalignment wavelength. The axle shown is the first axle of the first
coach in the consist (in the simulation, this axle typically produced large axle forces on the
track). Prior to the misalignment, this axle is centered on the track, with each wheel flange
having approximately 10 mm of clearance with the rails, as shown on the figure. As the axle
enters the misalignment, the right wheel flange hits the right rail, forcing the axle to the left.
After this initial impact, the left flange then hits the left rail at the exit of the misalignment.

Figure 4-3. Path ofaxle injlangeway clearance
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The axle path then continues to oscillate in the lateral direction before the motion is damped
out approximately 100m after the misalignment.

Net Axle Forces

The net axle forces exerted on the track for the case describe above are shown in
Figure 4-4. using a vehicle speed of 300 kIn/hr. As the leading axle (in this case, the first axle
of the first coach) enters the misalignment. the right wheel flange hits the right rail. as noted
above. This initial impact force of 25 kN (5.6 kips) opposes the direction of the misalignment,
as shown on the figure. After the initial impact, a much larger second impact of 55 kN
(12.4 kips) occurs when the left wheel flange hits the left rail. This second impact is in the
same direction as the misalignment. On a qualitative basis these results indicate that the
forces exerted at the entrance of the misalignment would tend to straighten the track. while the
forces exerted near the exit of the misalignment would tend to increase its amplitude and/or
wavelength. The results also indicate that the axle continues to apply oscillating lateral forces
to the track after exiting the misalignment.

Similar lateral force results are presented in Figure 4-5. which shows the net axle force
exerted on the track for a vehicle speed of 150 km/hr. The results again show that the initial
impact force at the entrance of the misalignment (13 kN, 2.9 kips) would tend to reduce the
size of the misalignment, whereas the much larger second impact force (28 kN, 6.3 kips) would
tend to increase it. Thus,jor both the 300 km/hr and 150 km/hr cases, theforce tending to
increase the size Qf the misalignment is approximately twice the magnitude of the force tending to
decrease the misalignment.

The foregOing numerical examples illustrate that the dynamic lateral force in the
misalignment can be significant. Due to the limitation of the track model in the current
SYSSIM model. the track response cannot be evaluated. There is also no dependable test data
in the literature that can explain the net influence of the dynamic load on the size and shape of
the imperfection.

In the absence of a rigorous track response model for moving loads. one approach
suggested is to average out the net force in the imperfection and use it as an empirical
adjustment to the allowable net axle lateral load. Such an approach is questionable in view of

Figure 4-4. Net lateral force on track at 300 km/hr
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Figure 4-5. Net lateral force on track at 150 km/hr

the relatively small length over which the lateral load is distributed. Static analysis performed
in Section 5 of this report showed that generally the lateral load distribution length is 3 to 5m,
which is less than the wavelength of the imperfection. Hence, consideration of the peak
dynamic force values in the assessment of track shift potential may be justified if they occur at
some distance away from one another along the track. Thus, referring to Figure 4-4, the
second peak force of 55 kN occurring at point B may contribute to the track shift
independently of the first peak at point A. This second peak indeed exceeds the 85 percent
Prud'homme limit (46 kN) for this example. Further detailed analysis is required to understand
the significance of dynamic components. Clearly, the situation of a curve with an initial
imperfection and cant deficiency under a high speed vehicle will show larger track shifting
forces due to the combination of steady state curving and dynamic loads.

The simulation has also been used to calculate the net axle force ratio exerted on the track
dUring negotiation of the track misalignment. Sample results for the calculated force ratio are
shown in Figure 4-6 for the case of a 12 nun amplitude, 10m wavelength misalignment with a
vehicle speed of 300 km/hr. Note that on this figure, the force ratio shows both positive and
negative algebraic signs. which correspond to the direction of the lateral force exerted on the
track. At the initial impact. the maximum force ratio is approXimately 0.19 in the negative
direction, tending to straighten the misalignment. At the second impact, the maximum force
ratio is approximately 0.41 in the positive direction. (Note that these quantities correspond
directly to the net axle forces shown in Figure 4-4.)

The effect of vehicle speed on the maximum resulting net axle force ratio is shown in
Figure 4-7 for the case of the 12 nun amplitude. 10m wavelength misalignment. This figure
shows that the net axle force ratio increases steadily with increasing vehicle speed, reaching
0.41 at 300 km/hr. as described in the case above. In each case shown on the figure, the
maximum net axle force ratio corresponds to a net axle lateral force in the positive direction.
occurring near the eXit of the misalignment.

Figure 4-8 presents similar results of the net axle force ratio as a function of the track
initial misalignment amplitude. for a misalignment wavelength of 10m. These results show
that the force ratio increases steadily with increasing misalignment amplitude. For each case
shown. the maximum net axle force ratio again corresponds to a net axle lateral force in the
positive direction. occurring near the eXit of the misalignment.
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In summary. the results presented here show that the net lateral axle forces and net axle
force ratios both increase with increasing vehicle speed and increasing misaligmnent
amplitude. At high speeds (300 km/hr), the lateral forces may exceed desired limits such as
the 85 percent Prud'homme limit. The results also indicate that the lateral forces exerted at
the entrance of a misaligmnent tend to straighten the track, whereas the lateral forces exerted
at the exit of a misaligmnent tend to increase the misalignment size. The relative magnitudes
of these forces indicate that their combined effect would tend to increase the overall size and/
or wavelength of the misalignment.
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In addition to detennining the lateral forces and force ratios applied to the track (as shown
by the preceding examples) the computer simulation is also useful for investigating other safety
limiting conditions arising from track shift. These conditions include the potential for wheel
climb derailment. the potential for gage widening derailment. and the degradation of ride
quality. The use of SYSSIM in assessing each of these conditions for the TOV-type consist is
discussed in the following subsections.

4.1.2 Wheel Climb Derailment

As explained previously, the computation of the rolling contact forces in SYSSIM allows a
representation of wheel climb derailment which is not dependent on any lateral-to-vertical
wheel force ratios. During a computer run, the model automatically indicates when a wheel
climb derailment has occurred. at which point the simulation is ended. The present model of
rolling contact is thought to be slightly conservative. Le., it predicts a derailment slightly more
easily than would be seen in the real world for the same case. This is primarily due to an
approximation in the third dimension at the contact angle used to speed up the calculation.

The wheel climb derailment results for cases studied in this analysis are summarized in
subsection 4.2.

4.1.3 Ride Quality

Serious deterioration of ride quality may also lead to an unsafe condition for the passenger.
particularly when standing. Several recent studies have suggested values for the peak-to-peak
lateral acceleration which were unacceptable. These values will vary with any unbalanced
lateral acceleration. A comprehensive discussion of this issue has been given by Eickhoff (251.
Other values suggested are slightly more conservative (26). A value of O.12g peak-to-peak has
been used in this study as a threshold to raise concerns on the ride quality issue during
passage through the track misalignment.
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The peak-to-peak lateral acceleration results for cases studied in this analysis are
presented in the following summary.

4.2 Summary of Simulation Results

Tables 4-1 and 4-2 summarize the results of the SYSSIM simulation studies for the TGV
type consist at speeds of 300 and 150 km/hr. respectively. Each table lists the calculated net
lateral axle forces. peak-to-peak lateral accelerations, truckside force ratios and the
occurrences of wheel climb derailment for several combinations for misalignment amplitude
and wavelength. As noted previously, the results shown in these tables have been filtered at
15 Hz to reduce the high frequency content ofthe response. The results are described below.

The net lateral axle forces generally increase with increasing speed and misalignment
amplitude. At high speed (300 km/hrl. for several cases of 12 and 20 mm misalignment. the
85 percent Prud'homme limit is exceeded, and this frequently coincides with a wheel climb
derailment. For misalignments of 8 mm or less. the net axle forces are less than 30 kN and are
well below the 85 percent Prud'homme limit.

The results also indicate that wheel climb derailments are likely at the largest misalignment
amplitude of 20 mm peak-to-peak. especially at the 300 km/hr vehicle speed. Ride quality also
appears to be marginal at misalignments greater that 12 mm, especially at 300 kIn/hr.
Truckside force ratios are also largest for the large misalignments (12 and 20 mm).

Based on these results. it appears that misalignments of 12 mm or greater mark the onset
of higher lateral track forces, degraded ride quality. and increased derailment potential for the

Table 4-1. Summary ofSYSSIM results for 300 km/hr

Jolt
Max Net Axle Peak-to-Peak

Misalignment Wavelength Lateral Force Lateral Accel. Max Truckside Wheel Climb
(mm) (m) (kN) (9) Force Ratio Derailment

4 8 <2 <0.05 0.02
8 8 <30 0.07 0.16

12 8 54* 0.11 0.40
20 8 Yes

4 10 <2 <0.05 0.02
8 10 <30 0.08 0.16

12 10 55* 0.12** 0.39
20 10 Yes

4 15 <2 <0.05 0.02
8 15 <30 0.08 0.18

12 15 59* 0.13** 0.40
20 15 Yes

4 20 <2 <0.05 0.02
8 20 <30 0.08 0.19

12 20 53* 0.13** 0.39
20 20 82* 0.15** 0.50

Notes:
Values not listed for derailed cases.
*Meets or exceeds limit of 0.85 (10 + V/3) for this case.
**Meets or exceeds desired limit of 0.12g peak-to-peak lateral acceleration.
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Table 4-2. Summary ofSYSSIM results for 150 km/hr

Jolt
Max Net Axle Peak-to-Peak

Misalignment Wavelength Lateral Force Lateral Acce!. Max Truckside Wheel Climb
(mm) (m) (kN) (9) Force Ratio Derailment

4 8 <2 <0.05 0.02
8 8 <30 0.09 0.14

12 8 <30 0.07 0.24
20 8 Yes

4 10 <2 <0.05 0.02
8 10 <30 0.08 0.13

12 10 <30 0.08 0.23
20 10 Yes

4 15 <2 <0.05 0.02
8 15 <30 0.09 0.16

12 15 <30 0.10 0.19
20 15 43 0.14* 0.32

4 20 <2 <0.05 0.02
8 20 <30 0.08 0.16

12 20 <30 0.10 0.16
20 20 <30 0.15* 0.24

Notes:
Values not listed for derailed cases.
*Meets or exceeds desired limit of 0.12g peak-to-peak lateral acceleration.

type of vehicle investigated here. For 20 mm misalignments, the potential for wheel climb
derailment is very high, with derailment typically preceding any serious degradation of ride
quality. Further work is required to examine the limits the misalignment amplitude and the
influence of curvature.

4.3 Conclusions of Simulation Studies

1. Use of vehicle dynamic models such as the SYSSIM simulation code will be important in
the evaluation of dynamic loads generated by the vehicles as they negotiate track
irregularities. The dynamic loads are required for the misalignment growth and track shift
studies. The SYSSIM model will also serve as a tool for the assessment of derailment
potential due to wheel climb, and ride quality degradation. As such, the model can
evaluate the permissible limits of track misalignments, track shift and vehicle speed.

2. The dynamic lateral axle loads applied to the tangent track during negotiation of a track
misalignment can generate large track shifting forces (peaks exceeding the 85 percent
Prud'homme limit). These loads, and the corresponding net axle force ratios, increase with
increasing vehicle speed and misalignment amplitude.

3. When the vehicle enters a sinusoidal misalignment on tangent track, the initial axle impact
force opposes the direction of the misalignment, and would tend to straighten the track.
However, near the exit of the misalignment, the vehicle also applies a second impact force.
This second impact force is typically much larger than the first, and is in the direction of
the initial misalignment, which would tend to increase the misalignment amplitude or
wavelength. Further work is required to quantify the track response under the dynamic
loads generated at the track irregularities.
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4. Wheel climb derailments can occur at misalignment amplitudes of 20 mm. even at the
lower vehicle speed of 150 km/hr, whereas at higher vehicle speeds (300 km/hr),
derailments may occur at misalignments of 12 mm or greater for the type of high speed
vehicle studied here. When a derailment occurs, the simulation indicates that it typically
precedes any serious degradation of passenger ride quality, meaning that up to the instant
of wheel climb derailment, the peak to peak lateral accelerations are not severe. Obviously,
serious degradation of ride quality will occur immediately after this point. Ride quality is
also degraded for cases which did not derail. However, ride quality may not be the
determining factor for all vehicles. For vehicles with body tilting mechanisms negotiating
cant deficient curves, wheel climb derailment and track shift potential may be the limiting
conditions, although the tilting vehicles and curves are not simulated in the present study.
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5. TRACK SHIFT MODELING AND TEST REQUIREMENTS

As stated in Section 3. the only available theoretical work on the track panel shift is that of
the SNCF (2.). This work calculated the panel response under a single monotonically increasing
lateral load and under a constant vertical load. The SNCF work was instrumental in defining
the limiting lateral loads for track shift for their specific track design. Advancements in track
design and analysis now permit a more rigorous evaluation to fully establish the capacities and
limitations of modem track. Computation of track shift can now be performed based on more
accurate vehicle loads and an appropriate track structure model. The requirements of this
advanced model are:

• It must be capable of predicting the cumulative deflection of the track panel under
loading and unloading cycles. and moving loads.

• It must rigorously account for the loaded nonlinear dynamic resistance of the ballast.

• It must include thermal and curvature effects.

5.1 Load Inputs

Development of appropriate load descriptions involves issues such as stationary versus
moving loads. quasi-static versus time varying loads. and single axle versus truck versus two
truck loads (Q). Models will have to be constructed to identify the critical load characteristics
reqUired in the track shift quantification. The issue of track dynamics should also be resolved
in a future modeling study. The immediate need exists to study the basic problem of the track
panel response under loading and unloading cycles and evaluate the cumulative residual
deflection as a function of cycles. The follOWing method will be used for the analysis of the
problem.

5.2 Track Panel Structural Model

The objectives of this model are:

• To determine the limit load level on the track for sudden panel shift or the onset of
significant track shift.

• To determine the cumulative residual deflection due to cyclic loading below the limit
load. .

The reqUired analysis consists of the follOWing important parts:

• Determination of vertical load distribution on ties.

• Evaluation of the resulting lateral resistance distribution.

• Lateral deflection response evaluation under vehicle and thermal loads. accounting for
curvature effects.
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• Evaluation of track panel limit load.

• Evaluation of residual deflection after unloading.

These are discussed in the follOwing subsections.

5.2.1 Vertical Load Distribution

The lateral track response under lateral loads is significantly influenced by the vertical load
distribution on ties due to the sensitivity of tie-ballast frictional forces to the vertical load.
Evaluation of the vertical load on ties requires the vertical foundation stiffness parameter. This
is a relatively straightforward task, if the vertical track modulus is assumed constant. If the
track vertical stiffness is nonlinear. as is usually the case. the solution is involved. An
assumption can be made that the track vertical stiffness can be considered linear up to some
value of vertical deflection (typically 0.1 in.) and nonlinear beyond that. Figure 5-1 shows this
vertical stiffness characteristic. Figure 5-2 shows the track structure model for vertical

-

Figure 5-2. Track model for vertical deflection
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deflection analyses. The differential equations and a solution technique for the vertical
deflection are presented in Appendix A.

NumericaL Example (TGV AxLe Load)

Numerical results from the formulation presented in Appendix A yielded the relationship
between applied load and the track vertical deflection, shown in Figure 5-3a. The track self
weight Q is ignored in this analysis. since the given vertical stiffness characteristic is assumed
to be with respect to added load on the track. The characteristic is linear up to v = 0.1 in.,
and nonlinear beyond this. Preliminary calculations for the track vertical response are shown
in Figure 5-3b.

The TGV axle load (assumed to be at 37.4 kips or 166.4 kN) gives a deflection of 0.093 in.
(2.4 mm) and is within the linear regime for the given track characteristic. For an assumed self
weight (Q = 3.5 kNjm), there is a additional downward deflection of 0.005 in. (0.13 mm).

Vertical Load Distribution

The vertical load distribution is calculated from

where

R
v

=vertical ballast reaction
k

v
=vertical stiffness

v =vertical deflection

Figure 5-4 shows the resulting load distribution on a typical track with ties spaced 24 in.
apart. Note that the center tie carries approximately 27 percent of the total vertical load.

5.2.2 Lateral Resistance Distribution

The distribution of the ballast resistance can be calculated from the load distribution on
the ties. Depending on the levels of consolidation, the lateral resistance of a single tie without
vehicle loads exhibits a characteristic as in Figure 5-5. Extensive data have been collected for
wood ties (2Q) and studies to characterize concrete tie resistance are now being planned by the
Volpe Center. Highly consolidated wood tie tracks showed softening (drooping) characteristics
beyond a lateral displacement, wp l::. 0.25 in., 6 mm), but the resistance levels off beyond a
limiting deflection value. WL, l::. 6 in., 150 mm). Freshly tamped tracks showed a constant
resistance beyond a certain displacement (also represented by w 'p for convenience). Hence. the
static (with no vehicles) resistance of consolidated track can be represented by the four
parameters, the peak resistance (Fp), the deflection at peak resistance (wp), the limit resistance
(FJ. and the deflection at limit resistance (wJ and that offreshly tamped tracks by wp and Fp'

In view of the relatively smaller deflections « 2 in.. 50 mm) that are of interest in track shift
analyses (compared to track buckling). wLand FLmay not be important parameters for track
shift, although the drooping part may still have to be incorporated up to a certain deflection
level (= 2 in. 50 mm). When the ties are loaded vertically, the initial resistance part tends to be
stiffer, and the resulting characteristics are as indicated in Figure 5-5. The value ofwp for the
loaded ties may be assumed to be the same as in the static case.

37



0.12 0.140.02 0.04 0.06 0.08

80

70

60

Ula. 50
~

"0 Nonlinear
ctl

40 TGV Axle Load0
....J

rn
u
t: 30
Q)

>
20

Linear
10

Max Vertical Deflection (in)

(a) Vertical Response

0.01 ...-----------------------..,
ol----....,...~==~------~

;§: -0.01
c
o -0.03n
Q)

~ -0.05
Cl

~ -0.07
.....
~ -0.09

-0.1 L..-..----10J...0----2....1.0-0----30.L..0-------J400

Distance, x (in)

(b) Deflection Profile for TGV Load

204-P-93883-9

Figure 5-3. Numerical result for vertical deflection response
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Figure 5-4. Distribution of the vertical tie reaction load
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Figure 5-5. Typical lateral resistance characteristics

It has been shown that the tie resistance has three significant components: the base, the
side friction, and the end shoulder (201. For loaded ties. the base friction changes. The loaded
resistance can be expressed as:

Fbase =Fbase +Jlf Rv (5-16)

(dynamic) (static)

where f.!f is a coefficient and Rv is the vertical load on the tie. The coefficient f.!f is to be
detennined from tests, and may be a function of Rv • for given tie and ballast conditions.
Limited data on f.!f for conventional wood tie track exist. but need to be determined for high
speed track with concrete ties. The expected variation of Fbase with respect to Rv is shown in
Figure 5-6. from which f.!fcan be evaluated. Note that when Rv equals -Q, where Q is track
weight. the base friction falls to zero. which will be the case in the track uplift region. at some
distance away from the load point.
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5.2.3 Lateral Response of Track Panel

The track panel lateral response can be determined with the knowledge of the lateral
resistance distribution as derived in the previous subsection. The lateral deflection of the track
is divided into two regions as indicated in Figure 5-7. The "tie" deflection at limit resistance
(wp) will be considered as the deflection beyond which the track accumulates significant
residual deflections.

• Region I represents deflections larger than wp of the lateral resistance characteristic.
The lateral resistance in this region is constant in the case of the tamped track or
"drooping" in the consolidated condition. The lateral resistance is also afunction of the
distance from the wheel location.

• Region II represents deflections less than wp ' The lateral resistance is assumed to be
proportional to the lateral displacement. The lateral stiffness is a function of the
distance coordinate.

The differential equations for the two regions are straightforward. Region I will have linear
or nonlinear differential equations (depending on tamped or consolidated track conditions),
whereas Region II will have a linear differential equation with a variable coeffiCient. Because
Region II is truncated at a finite distance, the boundary conditions will involve the
transversality condition of zero moment in addition to the zero deflection and slope conditions
at the ends. These boundary conditions and the conditions of continuity (on deflection, slope,
moment and shear force) at the common point between the two regions can be satisfied using
Fourier series and an iteration technique. Details of the solution are presented in Appendix B.

Figure 5-7. Lateral response model
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Numerical Results

Numerical results are presented here for the special case when the lateral deflection just
reaches the limit defined by w 'p The required lateral load for this deflection will be defined as
the track static lateral load limit. SI. Clearly, for H > SI, the ballast lateral resistance limit will
be exceeded for some ties in the central zone, and there will be significant residual deflection
after the wheel passage (unloading). It is of practical interest to evaluate SI as a function of the
follOwing parameters, as it represents an upper bound for track strength.

SI = f(V, Fp,s, Ilf, kv. ~T,R)

where

v = axle vertical load
Fp.s peak value of ballast lateral static resistance
Ilf = tie-ballast friction coefficient
kv = track vertical stiffness
~T = rail temperature over the neutral
R track radius

Table 5-1 presents the assumed parameters for the numerical study. The tie limiting
deflection. assumed to occur at the peak value of the resistance, is set at wp =6.4 mm
(= 0.25 in.) (211. The torsional stiffness of the fasteners is neglected for simplicity in the
preliminary assessments.

As shown in Appendix B, the solution of the problem is developed using Fourier series.
This results in an infinite system for simultaneous equations for the Fourier coefficients. For
numerical work, the first five harmonics are considered. The convergence of the series is fast
as seen from Figure 5-8 which compares the results from one. two and five harmonics with the
exact solution. The lateral stiffness increment represents the quantity (IltRvl divided by w 'p
(See Equation 5-16.)

Table 5-1. Assumed track parameters

Parameter Units Range Nominal Value

Axle vertical load kips 20 to 50 37.4
kN 89.0 to 222.4 166.4

Static lateral resistance peak, Fp Ib/in. 50 to 200 100
kN/m 8.8 to 35.0 17.5

Tie-ballastfriction coefficient 0.4 to 1.0 0.5

Track vertical stiffness psi 2000 to 10,000 6000
MPa 13.8 to 69.0 41.4

Rail temperature over neutral of Oto 75 0
'C oto 41.7 0

Track cu rvatu re deg oto 8 o(tangent)
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Figure 5-8. Fourier series approximation to lateral stiffness
contribution by vertical load lkv =6000 psi. V =37.4 kips)

The following parametric study is performed using the parameters in Table 5-1. The
"variable" in the study is over the range specified and other parameters assume the nominal
values in the table.

1. Effects ojAxle Vertical Load - The axle vertical load has a stabilizing effect as seen from
Figure 5-9. For an assumed axle load of 37.4 kips (for a TGV type carl. the lateral load
limit for the track lateral response to be within the tie defleCtion limit of 0.25 in., is about
22 kips (97.9 kN). A 10 percent increase in the axle load will increase the lateral limit
load by about 5 percent.

2. Effect ojBaUast Lateral Resistance - This is an important parameter governing the lateral
strength of the track. As seen in Figure 5-10. for some weak tracks (after lifting and
tamping operations), the resistance can be as low as 50 lb/in. which gives a value of
about 18 kips (80 kN) for the load limit. For strong tracks (Fp,s = 200 lb/in.) this value
increases to about 29 kips (129 kN).

3. Effect ojTie-BaLlast Friction CoeffiCient - A high tie-ballast friction coefficient is clearly
desirable as it increases the track lateral resistance. Figure 5-11 gives the results for Se
over a possible range of field values. The low friction coefficient of 0.4 represents concrete
ties with a smooth bottom surface. The higher value of 0.8 is typical for modern concrete
tie track with granite ballast.

4. Effect ojTrack Vertical Stiifness - Figure 5-12 shows the results for the lateral limit load,
S" over a typical range of track vertical stiffness. Over the range (2,000 to 10,000 psi), of
the vertical stiffness, the variation is apparently small «5 percent). This needs to be
confirmed by further detailed analysis.

5. Effect ojTemperature and Curvature - Because the defleCtions are small, the rail tempera
ture effect on the lateral load is small in the case of the tangent track. However, for the
curved track the effect appears to be significant (Figure 5-13 shows the relationship
between the limit load S" the rail temperature above neutral, and the track curvature for
assumed elastic displacement of 0.25 in.). The radial movement (breathing) of the curve
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Figure 5-9. Effect of axle vertical load on panel lateral limit load

Figure 5-10. Effect ofballast lateral resistance on panel lateral limit load
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Figure 5-11. Effect of tie-ballast friction coefficient on panel limit load
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Figure 5-12. Effect of vertical stUfness on panel lateral limit load

44



25,-----------------------------,

_ 15-
enc.
g

10 -

5-

'~:--
Tangent

I I I I I I Io0'-----1.J....0---2'-0---3'-0---4'-0----J50------"J6'"=-0---=7'="""0---='80

Rail Temperature Above Neutral (OF)
306-DTS-94070-2

Figure 5-13. Effect of temperature and curvature on panel lateral
limit load (wp=0.25 in.)

under the influence of temperature reduces the limit in the cUlved track as compared to
the tangent track. For example. the 4 deg CUlve will move radially outwards under
thennalload alone (L1T=75°F) and to reach a total deflection of 0.25 in.. requires a lateral
load of 15.2 kips. The 8 deg curve requires a load of 10.8 kips. Of course. such high
degree curves are seldom used for high speed passenger transportation. This study may
be of practical interest in the freight transportation on slow speed tracks on which large
lateral loads can be generated due to relatively large initial misalignments pennitted. or
due to inadequate superelevation.

5.2.4 Comparison with Existing Empirical Limits

It is of interest to compare the limiting static strength of the track as derived from the
analysis with the available empirical crtteria for allowable vehicle loads. which is discussed in
Section 3. The Prud'homme. 85 percent Prud'homme. Amans and Sauvage and the recent 0.5
times axle vertical load (ill are candidates for the comparison. The theoretical values used here
are of course for specific track parameters. whereas the empirical criteria are supposed to be
applicable for all tracks and conditions. Also the calculated static limit load is at best
permissible for a stationary load application. whereas the empirical criteria are for a large
number of moving load passes.

The relationship between the lateral load limit and the degree of track curvature is shown
for all of the above criteria in Figure 5-14. Results ofthe analysis procedure discussed in
subsection 5.2.3 are shown in the heavy solid lines for three different temperature levels.
These temperatures represent the difference between the current rail temperature and the rail
neutral (zero force) temperature. The highest level (75°F) is considered to be a realistic worst
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case. Since the limiting strength of curved tracks reduces with rail temperature increase. the
criteria should include the temperature and curvature effects. Clearly the permissible loads
according to any criterion should always be much lower than the static track strength for the
track to withstand a number of vehicle passes. Thus, the SNCF criteria (Amans & Sauvage,
and Prud'homme) seem to be more appropriate than the V/2 criterion. Their allowable loads
are substantially below the static strength. thus potentially letting the track withstand many
axle passes at these load levels.

5.2.5 Cumulative Residual Deflection Model

Although the analysis presented in the previous section gives some sort of an upper bound
for track strength. it does not address the track shift problem in a rigorous manner. For track
shift analysis, it is important to simulate moving loads and determine the stable and
progressive regimes of track shift as presented in Section 2. A rigorous track shift model is
currently under development. The following represent a hierarchy of problems under
investigation.

• One cycle stationary load with unloading.

• Cyclic stationary loads.

• Single moving load (axle).

• MOving load under many axle passes.

• Moving truck loads under many passes.

The first three problems fonn building blocks in the final analysis of the track shift, 4>. as
defIned by the last two problems. A basic approach for cyclic loads is presented here.

Referring to Figure 5-15 the track is unloaded at the point 1. The strain energy in deflected
rails (and possibly in elastic fasteners) tends to return the track panel to its original position,
but the static lateral resistance opposes it. The resulting residual deflection calculation LlI can
be based on the beam theory discussed above and on the static resistance data and treating
the deflection WI as the initial imperfection. WOo Using LlI as the initial deflection. the response
up to point 2 is determined. The Ll2 is next evaluated and so on for subsequent cycles. With
increasing dejlection the tie resistance available may reduce which must be properly accounted
for in the analysis.

Figure 5-15. Track panel lateral response
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If after a finite number of passes, the increment L\n becomes negligible, then the track shift
is stabilized at I.L\n. On the other hand, if L\] <L\2 <L\3. the track shift occurs in rapid
progression without reaching any stable limit. Such a condition has been used by the SNCF in
their test data reduction. The model for the residual deflection evaluation is critical in
understanding and quantifying the track shift phenomenon and requires further research.

5.3 Test Requirements

Both static and dynamic (moving load) tests will be required to assess track shift in the field
conditions. Tests will also be required to evaluate the basic parameters of the track for use as
inputs in the analytic models referred to in subsection 5.2.

5.3.1 Parameter Evaluation

Track parameters quantified in the United States previously are for the wood tie track with
cut spike construction. Modem high speed track is unlikely to be of this construction.
Assuming the modern high speed track in the United States uses concrete ties and appropriate
fasteners, we will need to evaluate the follOWing parameters for such a track.

• Tie-ballast lateral resistance (loaded and unloaded).

• Fastener torsional resistance.

• Track vertical modulus.

• Rail section properties (including flexure rigidities in vertical and lateral planes).

• CWR neutral temperature.

Test methodology to determine tie-ballast resistance has been developed in the United
States. The loaded tie resistance requires simulation of large loads. (Approximately 30 percent
of the axle load may be borne on the tie directly underneath the wheels.) Since test simulation
of large loads on a single tie and pulling it laterally can be very cumbersome. an indirect means
such as the one presented in the following subsection will be required.

Both loaded and unloaded tie-ballast resistance should be accurately measured at
incremental displacement of 0.02 in. (0.5 mm) up to 1.2 to 1.6 in. (30 to 40 mm) for the track
shift evaluation studies.

5.3.2 Track Panel Tests

Static loaded concrete tie track panel tests are needed to immediately accomplish the
follOwing objectives. Vehicles with two axle trucks can be conveniently used in the load
simulation. Alternately the Track Loading Vehicle of AAR may be modified to simulate the
single axle loads. The track panel test objectives are:

1. Determine the vertical load distributions under the vehicle load.

2. Determine the lateral load distributions under a single lateral load and the combination of
lateral and vertical loads.

3. Determine the tie ballast loaded resistance as a function of the vertical load. using the data
collected from (1) and (2).

48



'. ... . . . . / / --. .
.......... -.....

a) Vertical Load Scheme

/Rail

~~~~~~-Frame

, Hydraulic

Cylinder

b) Lateral Loading Scheme

o tOO
~~ VerticalA lie Disp.

, Lateral Tie Disp.

x

o

V

X Strain Gage Circuit for Vertical Shear
o Strain Gage Circuit for Lateral Shear

V

x x x

c) Typical Installation
234-DTS-94070-1

Figure 5-16. Testing and instrumentation scheme

49



4. Validate the analytic model for the lateral track response.

5. For cyclic loading and unloading, validate the hierarchial cumulative residual defleCtion
models to be developed as discussed in subsection 5.2.5.

Test Methodology

The test methodology is similar to that of the Track Lateral Pull Tests (TLPT) previously
conducted by VNTSC (20), except that the rails are now to be instrumented by strain gages to
record the lateral and vertical shear loads, and hence the tie loads. Figure 5-16 shows the
instrumentation schematically. The load defleCtion response is to be recorded on an x-y
plotter.

The application of required vertical load can be facilitated using an appropriately loaded
long flat car. The lateral load can be applied using two or more hydraulic cylinders in parallel
operated by electric pumps, and reacted by two or more bulldozers. If more than two cylinders
are used, the load application can be done through a "whiffle tree" arrangement.

Unloading can be done by first releasing the lateral hydraulic power and rolling the car out
of the test zone. The residual defleCtion can be measured and the loading cycle repeated. In
this setup, the vertical and the lateral loads are not truly in "phase," but this is not likely to
contribute to significant error in the test results. Clearly. the track panel response for residual
defleCtions should be performed under combinations of vertical and lateral loads covering the
practical range of interest.

5.4 Summary

• Analytic models for the loaded track panel structural response in the small deflection
range are critical for understanding the track shift phenomenon. Determination of
1) the vertical load distribution, 2) the lateral resistance or stiffness distribution, 3) the
track lateral response under axle lateral loads, and 4) the residual deflection after the
wheel passage are important parts of the required analysis. The first three parts are
conceptually simpler than the last to formulate, but are mathematically involved. The
determination of residual defleCtion is extremely complex but critical to the track shift
studies.

• An approach is presented to resolve the analytic problems. Preliminary calculations on
the limiting lateral load for the elastic response of the track panel under a vertical wheel
load have yielded good results comparable to those of the SNCF. These calculations
demonstrate the importance of the track parameters such as the tie ballast friction
coefficient. peak ballast resistance. foundation modulus, rail force, and track curvature.

• Several issues which remain to be addressed are: single axle versus truck loads;
stationary loads versus moving loads: and quasi-static versus time varying loads. The
ballast resistance in the vibratory environment due to high speed trains should also be
exanlined.

• Certain basic field tests may need to be performed to support the development of the
analytic methods. The tests will evaluate the fundamental track parameters including
the resistance within the small deflection range «20 mm). In addition, the loaded track
panel lateral response under single and repeated loads will also need to be evaluated. A
test procedure is outlined that uses stationary loads for this purpose. This is relatively
inexpensive and will aid the preliminary model validation. Full-scale high speed tests
can be defined and undertaken after the simpler proposed test.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

1. Critical track shift conditions are identified in terms of cumulative residual track
deflections. vehicle lateral loads, and the limiting track strength. Failure modes arising
from the track shift include sudden track panel movement, derailment due to wheel climb
or gage widening, and ride quality deterioration.

2. Vehicle qualification and other tests on high speed vehicles such as TGV, ICE and X2000
have been performed in Europe and recently in the United States. These tests typically
evaluated the limiting vehicle speeds and loads from considerations of ride quality, wheel
climb derailment and track shift. Only the SNCF performed systematic experimental
studies on their TGV, which included the evaluation of allowable lateral loads from the
track shift point of view. It is extremely important to evaluate the reqUired track strength
to assure that it is the basis for determining the ultimate safe vehicle speed. Although the
ride quality and wheel climb considerations determine speed limits at present, modern
high speed vehicles are continuously evolving to overcome these limitations through use of
tilting bodies, radially steered trucks and other means.

3. Although the Prud'homme limit and other criteria are in usage for the vehicle qualification
loads, the criteria, being empirical, cannot cover the wide range of track conditions that
can exist. The criteria can be in some cases conservative and in some others
nonconservative. Hence, a rational method of evaluating the vehicle qualification loads will
be useful for safety and optimum utilization of high speed train operations. Such a method
requires rigorous track shift analysis supplemented by limited well planned experiments.

4. Vehicle dynamic modeling will be an integral part of track shift studies. All the theoretical
and experimental studies to date were performed for constant lateral axle loads. Vehicle
dynamic models can determine dynamic loads due to hunting and misalignment
negotiation. Using the SYSSIM computer simulation, the influence of track lateral
misalignments has been studied; and the result shows that the peak lateral loads
generated on the track can be significant at high speeds unless stringent limits on track
misalignments are imposed.

5. Modeling requirements of the track structure have been identified. Determination of the
track vertical response, resulting track lateral resistance disttibution and the track lateral
response are important in the track shift studies. Analytic methods have been suggested
and demonstrated with numerical results for the lateral limiting static strength of loaded
track panel. The analysis accounts for the wheel vertical load influence on the track lateral
resistance, tie-ballast friction coefficient, rail thermal force and track curvature. The
general case of "nonlinear" track response is involved from a numerical solution point of
view, though conceptually not difficult for the differential equation formulation. The most
difficult, but important, analytic task is the evaluation of the lateral residual deflection
under repeated loading and unloading cycles. An approach is indicated for further
consideration. Track profile degradation under repeated vertical loads is also important
although this has not been discussed in this report. Similarly environmental effects (frost
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heave. water flooding) are also important considerations for integrity of the track structure.
but are not discussed in this report.

6. Tests on loaded track panels to determine the important track parameters and to validate
the static models referred to in item 5 have been identified. Repeated loads can also be
simulated in the test setup to evaluate the residual deflection.

6.2 Recommendations

1. Static Continuum Model - The track vertical response and the lateral resistance model are
reasonably well developed. The loaded track static lateral response calculation up to its
limit. as formulated in this report. seems to be reasonable. The method should be
extended and numerically demonstrated for moving loads. Both single axle and truck
loads should be studied. The method should account for rail temperature and curvature
and any unbalanced force due to cant deficiency. The model should be extended to include
repeated loads. The residual deflection at each load cycle should be determined through a
proper idealization of the tie-ballast resistance.

2. Track Dynamic Model- A generalized track dynamic model should be developed to study
the influence of quasi static moving and dynamic loads (as determined by the present
SYSSIM model). The track lateral deflections should be compared with one another and
with the defleCtions obtained from the static load idealization in item 1. The track dynamic
model will resolve issues related to proper load characterization and will also provide a
useful building block in the integrated vehicle-track model.

3. Vehicle Dynamic Model- The present vehicle dynamic model (SYSSIM) though satisfactory
as used in this report. can be improved with new connections for more accurate
calculations of the vehicle loads. Consideration should be given to combining the improved
vehicle dynamic model and the generalized track dynamic model. Such a model will
evaluate the vehicle loads and the derailment potential more rigorously than the existing
vehicle dynamic model. which is connected to the track by a simplistic spring.
Development of such an integrated model will be involved. Hence. it is also necessary to
pursue the static continuum model in parallel to obtain solutions without undue labor for
practical applications.

4. Testing - Static tests on instrumented loaded track panels should be performed for the
determination of the tie-ballast friction coefficient at various vertical load levels. and also to
validate the track lateral response model presented in this report. The panel elastic
response load limit should also be determined from the tests. Repeated lateral load cases
should also be studied to evaluate the growth of the residual lateral deflection with load
cycles.

52



APPENDIX A

TRACK PANEL VERTICAL RESPONSE

A-I



Referring to Figure 5-2 which shows the structural model, the differential equation for
region 2 is

(A-I)

Here, kv is the vertical stiffness and Q is the self weight of the track/unit length.

Solution of this equation satisfying the requirement v2 = v2 = 0 as x ---,} 00 is

(A-2)

where ~ = x - s (see Figure 5-2) for convenience. CI and C2 are integration constants, and

The differential equation in region 1 can be shown to be

(A-3)

Here. V is the vertical axle load, Go is constant and G(vl) is the nonlinear load-deflection
function. and 0'(0) is the Dirac's delta function. Go represents the load at the transition point
between the linear and nonlinear regimes of the tie vertical response. The factor of one-half is
due to the right side region (0 < x < s) under consideration.

Note that the thennalload and fastener torsional stiffness are not included in the foregoing
differential equations, as the anticipated vertical deflections are small. However, it is not
difficult to include the rail force (as shown in the previous analysis), which may be required for
the case of very soft foundation or large initial vertical misalignment.

Solution of Equation (A-3) will be written as

00

2 I m1tXVI =C3 +C4X + Am cos--
2s (A-4)

1,3,5

The first two tenns represent the symmetric homogeneous solutions of Equation (A-3) and the
last Fourier expression is intended to satisfy the complete differential equation.

The symmetric boundary conditions at x =0 are satisfied. The conditions of continuity
between the two regions are

Atx= s

(A-5)
Deflection

(A-6)

A-2



Where V represents the matching displacement between the linear and nonlinear regimes
of the ballast vertical stiffness characteristic.

Slope (A-7)

Moment (A-8)

Shear force (A-9)

Defining

G v L ID1tX
o --8[o)-Q= amcos-- (A-lO)

2 2s

-G(vl)= LB cos--m1tX (A-ll)m 2s

we find from Fourier analysis

s

am = ~ f [Go -~ 8[o)-Q]cOs[~:}lx (A-12)

o

=-4 m1t • Sin( ~1t ) • (G0 - Q) - ~

2f-
s

B m =- G(VI)cos--dxll11tX (A-13)S 2s
o

(A-14)

For a given value of V, there are six unknowns in the solution presented above ICI, ... , C4,
[Am]' sl. There are six equations (A-5) to (A-9) and Equation (A-14). Hence, a complete rigorous
solution is obtained. It is convenient to treat V as the unknown for an assumed value of s.
This will result into linear equations that can be easily solved. Once v(x) =VI (x) + v2(X) is
known, then the tie vertical force distribution, Rv(x} is obtained from.

Rv(x) =kvv(x) + Q

A-3





APPENDIXB

TRACK PANEL LATERAL RESPONSE

B-1



Refening to Figure 5-7, the differential equation for region I is

(B-1)

Here the primes denote the derivatives with respect to x

wI = deflection in region 1
Po = thermal load = AEaT (for small deflection)
T = temperature rise over the neutral
A = cross-sectional area (two rails)
E = Young's modulus of rail steel
Wo = preexisting misalignment, if any
Fp,d = peak dynamic (load) resistance of tie

F = nonlinear part accounting for softening
= o (for tamped track)

H = lateral axle load
0(0) = Dirac's delta function

For region II, the differential equation is

Elw IIII +P w "+kw -a 0 (B-2)2 2 2-

where

k = variable linear stiffness
= Fp,d/Wp
= (Fp.s + IltRv) /wp

Here

Fp.s = peak value of static lateral resistance
Ilf = tie-ballast friction coeffiCient

Clearly, k can be written as

(B-3)

where

kg = static stiffness = Fp,s/wp
~ = additional stiffness due to vertical loading

= IltRv/wp

Special Case w2:S; w p

For w2 :s; wp, the inelastic track deflection, region I is not developed, The differential
equation for w2 in the right half of the region (0 < x < L) is

(B-4)

B-2



The boundary conditions on W2 are

A L ".t x = : w2 = w2 = w2 = (B-5)0

These conditions can be proved through the variational principle.

A solution of Equation (B-4) is developed using the Fourier method. Let

w2 = LAm
00

m1tXcos / 2L (B-6)

1,3,5

L n1tX
k =ao + an cos--

2L (B-7)
1,3,5

Here

L

an =~ f R
Ilf v cos(n1tX / L)dx

L w (B-8)
p

o

Substitution of the above expressions in Equation (B-4) gives

L L m1tX n1tX H+ Am an cos--eCOS--=-D(O)
2L 2L 2 (B-9)ill 0=1,3.5

1,3.5

Mter taking the Fourier transform of the above expression we obtain

'ViAi + L£mi Am =H/L U=1.3.5.... )
(B-lO)

m

where

=--Lan {Sin(m - n - i)n / 2 sin(m - n + i)n / 2
€mi +----'-----'--.:......-

2n m - n - i m - n + i

sin(m + n - i)n / 2 sin(m + n + i)n /+ + ---'--_---:..---..:....-2}
(B-l1)

m+n-i m+n+i

B-3



and

i1t
(

)4 (i1t
'V i = EI 2L - Po 2L

)2
+ a o (B-12)

All the boundary conditions are satisfied. except the transversality condition at x = L which
gives

LAm msin ~1t = 0 (B-13)
m

This last equation together with the expression (B-1 0) will determine the Fourier coefficients
IAmI and the wavelength L for a given value of H. The deflection response of H versus w can be
detennined. The infinite series can be truncated at a finite number of tenns (usually five
harmonics) due to the fast convergence of the Fourier series.

B-4
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